Titre : | Causal inference : the mixtape |
Auteurs : | Scott CUNNINGHAM, Auteur |
Type de document : | Texte imprimé |
Editeur : | Yale University Press, 2021 |
Importance matérielle : | 572 p. |
ISBN/ISSN/EAN : | 978-0-300-25168-5 |
Langues: | Anglais |
Index. décimale : | 212.53 |
Mots-clés : |
[Aciège 2017] PROBABILITES [Aciège 2017] TECHNIQUE [Aciège 2017] STATISTIQUES SOCIALES [Classement] STATISTIQUE |
Résumé : | Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied―for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages. |
Exemplaires (1)
Code-barres | Cote | Support | Emplacement | Disponibilité |
---|---|---|---|---|
081405 | 212.53 CUN | Livre | Salle de lecture | Disponible |